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Role of recovery in high temperature 
constant strain rate deformation 
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A model based on the three-dimensional distribution of dislocations is used to delineate the 
role of recovery during high temperature constant strain rate deformation. The model provides 
a good semi-quantitative explanation for classical work-hardening as well as for high 
temperature work-softening resulting from rapid recovery. It predicts linear work-hardening, 
whereby the ratio of the work-hardening rate, t4, to the shear modulus, G, is constant when a 
crystal is tested in the absence of recovery. The slope of the stress-strain curve, O, for high 
temperature deformation is related to the low temperature work-hardening rate H; the 
dislocation annihilation rate 15 a, the flow stress or, the free dislocation density p, the strain rate 
8, and a parameter which is sensitive to the dislocation distribution. A modified version of the 
Bailey-Orowan equation for simultaneous work-hardening and recovery during constant strain 
rate deformation which is derived from the model takes the form 

0 = H -  q ( t )R /~  

where R is the rate of recovery and q (t), which is time-dependent during the transient stage 
of deformation, is determined by such factors as or, p and the details of the dislocation 
distribution. 

1. I n t r o d u c t i o n  
The mechanical properties of crystalline materials are 
determined largely by the behaviour of dislocations 
when such materials are subjected to an external 
stress. The dislocation structure in an annealed crystal 
typically consists of a three-dimensional array of ran- 
domly distributed dislocation segments. Upon the 
application of stress, the glide motion of dislocations 
which happen to lie on favourably oriented crystal- 
lographic planes results in the production of plastic 
strain. This is often accompanied by an increase in the 
density of dislocations and, usually, a perceptible 
change in the dislocation distribution. Also associated 
with this process is the phenomenon of work-harden- 
ing whereby the applied stress has to be continually 
increased in order to maintain steady plastic flow. 
Work-hardening at low temperatures is ordinarily 
attributed to the increasing interaction between the 
stress fields of dislocations as their density increases 
during multiple slip. 

The flow stress during classical work-hardening 
usually varies in direct proportion with the square 
root of the dislocation density. Several work-harden- 
ing theories have been proposed to explain this obser- 
vation [1, 2]. The correlation between strength and 
dislocation density, however, usually breaks down in 
materials deformed at elevated temperatures. During 
the normal primary stage of recovery creep, the free 

dislocation density decreases even though the mater- 
ial is becoming stronger, as is manifested by the 
decreasing creep rate. Such apparent lack of correla- 
tion has also been observed in materials deformed 
under constant strain rate at high temperatures I-3, 4]. 
It is often not possible to correlate high temperature 
strength with the dislocation structure without in- 
voking subgrain strengthening. This is in spite of 
several observations of work-softening and creep- 
weakening which have also been associated with the 
process of subgrain formation in various materials 
1-5-83. 

It is firmly established that, besides work-harden- 
ing, recovery also occurs during high temperature 
deformation, as is evident from such metallographic- 
ally observable features as the reduction in dislocation 
density and, sometimes, the formation of a substruc- 
ture. It is becoming increasingly clear that problems 
associated with high temperature strength/micro- 
structure correlations will not abate as long as ration- 
alizations of strength are based mainly on the obstacle 
density, with little consideration for the rate at which 
such obstacles are overcome. In recovery-controlled 
deformation, the latter is determined by the rate of 
recovery, whose effect on the rate of deformation has 
been so often overlooked apparently because it is not 
a feature which can be directly observed metallo- 
graphically. 
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A recent creep model in which this "dynamic effect" 
is taken into account establishes a direct correlation 
between the creep rate and the rate of annihilation of 
dislocations in a three-dimensional network [9]. In 
the present paper, the basic ideas of the network 
recovery model are applied to high temperature con- 
stant strain rate deformation in order to place the role 
of recovery during this deformation mode in proper 
perspective. 

2. Physical background 
The so-called "free" dislocations are often arranged in 
the classical Frank network configuration during high 
temperature deformation. This consists of randomly- 
oriented dislocation links of various lengths (k) which 
are joined at nodes. Following Lagneborg and co- 
workers [10-12], the frequency function qb(~, t) at any 
instant, t, is defined such that qb(k, t ) d k  is the number 
of links per unit volume having lengths between ~ and 

+ d~. (Fig. 1). Under an applied stress, c~, only 
favourably-oriented links which attain a threshold size 
~, can glide. This threshold size is given by 

~a = % G b / o  (1) 

where G is the shear modulus of the material, b the 
Burgers vector of the dislocations and % is a constant. 
The average link length ( k )  is related to the free 
dislocation density (p) according to the equation 

( ~ )  = 9 - ' / 2  (2) 

A rough cellular structure, consisting mainly of 
dislocation tangles, rather than a well-defined net- 
work, is usually associated with low-temperature de- 
formation. However, within the tangles will be found 
dislocation segments of various lengths and orienta- 
tions, and only those with the appropriate threshold 
length and favourable crystallographic orientation 
will be able to glide in response to the applied stress. 
Thus the notion of distribution function as well as the 
average and threshold link sizes can also be applied to 
dislocation structures formed during low temperature 
deformation. 

If the stress on a sample deforming at low temper- 
ature (i.e. in the absence of recovery) is held constant, 
deformation stops. This implies that links longer than 

0 (h) h o 

Figure 1 Schematic illustration of the distribution function (~(~, t) 
indicating the links which are mobilized upon reducing the 
threshold size by AXa (shaded area). 

the threshold size either do not exist, or are otherwise 
not favourably oriented for glide, in which case they 
can be considered immobile. Dislocations can be mo- 
bilized only by decreasing ka (i.e. by increasing cy). 
This gives rise to the effect known as "work-harden- 
ing". Certain past work-hardening models, such as the 
dislocation meshlength theory, have been formulated 
along essentially the same conceptual lines [13]. 

At high temperature the mobilization of dis- 
locations can also be effected through the recovery 
growth of links to the threshold size. In the creep 
deformation mode, ~.~ is constant due to the constancy 
of cy while ( k )  increases as the dislocation struc- 
ture coarsens by recovery. In recovery-controlled 
(athermal) creep, potentially mobile links which attain 
the threshold length, ~a, through recovery are mobil- 
ized and the number of such mobilized links per unit 
time determines the creep rate [9]. It is presumed that 
dislocations glide "jerkily" which in effect means that 
they spend a relatively long time waiting to attain the 
threshold size and, upon attaining it, glide rapidly to 
the next obstacle. In pure metals and certain solid 
solutions these obstacles are mainly other network 
links whose interactions with the gliding links often 
result in the formation of dislocation nodes. For the 
kind of(jerky) glide envisaged, most links must, at any 
instant, be waiting while relatively few are gliding. 
This means that ~a must be appreciably larger than 
( k ) ,  as shown in Fig. 1 [14]. The thermally activated 
release of links which could be shorter than ka is also 
possible but is not considered in this model. 

3. L o w  t e m p e r a t u r e  d e f o r m a t i o n  
Upon increasing the applied stress by A(L the 
threshold size decreases by A~a, whereupon Apm dis- 
locations are mobilized (Fig. 1). This is the density of 
dislocations contained within the shaded region under 
the distribution curve, and is given by 

AOm = - -  fp qba)~a A~La (3) 

where qb a = (~(ka, t) and the negative sign derives from 
the fact that a decrease in ~,~ is required to mobilize 
links. Implicit in Equation 3 is the assumption that 
within any given region in the distribution, a constant 
fraction fp of links are favourably oriented for glide. 
This is the fraction of links which are potentially 
mobile. The rate of mobilization of links is, from 
Equation 3 

Om -- fp qba~Lad)~a/ dt (3a) 

The strain, As, generated within a small time inter- 
val, At, when A N  m dislocation links (per unit volume) 
are mobilized is 

As  = % b ( A ) A N  m (4) 

where ( A )  is the average area swept by a mobilized 
link and ~, is a constant. We can re-write Equation 4 
as A~ = O~lbL)LaAN m = ~lbLApm,  where Apm ( = )~aANm) 
is the density of links mobilized and L( = (A) / )~)  is 
closely related to the average distance through which 
a dislocation glides before encountering the next ob- 
stacle, or the average obstacle spacing. Thus as 
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At --, 0, the strain rate becomes 

= ~ b L ( M  (5) 

which, combined with Equation 3a gives 

= -- ~ lbLfpdp.  k a d k . / d t  (6) 

Differentiating Equation 1 with respect to t and set- 
ting % Gb = c gives 

d~, a c d0- 
- (7) 

dt 0-2 dt 

which can be combined with Equations 1 and 6 to 
yield 

- 

where 6 = d0-/dt. 

O~l bLfp ~)aC2 ~ 
~3 (8) 

Assuming that dislocation multiplication results 
mainly from the glide of mobilized links and taking 
the density of dislocations generated (Ap) within a 
small time interval (At) to vary proportionally with 
the density mobilized (Apm), 

AO = 13Apm- I~fpqba)~aA~, a (9) 

where the expression for Apm in Equation 3 has been 
used and 13 is a proportionality constant. Noting that 
AXa = - cA0-/0- z (from Equation 7), Equation 9 
becomes, in the limit At ~ 0, 

d ~  

dp 

The relation 

0-2 

13Cfp qb, ka 
(10) 

0- -= ~2Gbp 1/2 (11) 

where ~2 is a constant, is often found to hold during 
constant strain rate deformation at low temperature. 
Differentiating Equation 11 gives 

do- O~ 2 Gb 
- (12)  

do 2p 1/2 

which, when compared with Equation 10 yields, for 
low temperature deformation, 

2p 1/2 0-2 
~, - (13) 

~cc~ Gbf~ka 
This expression for dp. appears reasonable as it pre- 
dicts that the number of threshold-size links should 
increase with increasing p and 0-, and decreasing ka. 
By virtue of Equations 1 and 11, Equation 13 gives 
qb~ pc p2 during low temperature deformation. 

The low temperature work-hardening rate, H, is 
found by re-arranging Equation 8 to give 

dcy 6 0 -3 

H -  de - ~ ~lbLfpqba c2 (14) 

Substituting for qb. (Equation 13) in Equation 14 and 
taking cognizance of Equation 1, the work-hardening 
rate can be written as 

H = (13~2/2~1)G (15) 

where L has been assumed to be equal to p-~/2.  

Equation l5 predicts linear work-hardening (H 

= constant), as is observed to be the case during the 
stage II deformation of single crystals [1, 2]. Since c~ 1 
and c( 2 are both of the order of unity, the fact that H is 
orders of magnitude lower than G simply implies that 
[3 ~ 1. In other words, the fractional increase in length 
associated with a mobilized link during one glide 
event must be small. 

4. H i g h  t e m p e r a t u r e  d e f o r m a t i o n  
Dislocation links are mobilized through the combined 
action of recovery and stress increase during high 
temperature deformation. Here we visualize a situ- 
ation in which the distribution is held stationary for 
time At during which links of threshold size (k = ~"a) 

increase their length by A;LI~=k a through recovery. 
Links lying within the dotted region under the fre- 
quency curve (Fig. 2) will be mobilized if glide were 
now allowed to occur. The density of mobilized dis- 
locations due to recovery alone (i.e. holding 0- o r  ~a 

constant) is thus 

Apm,,. = f p ~ b ~ k . A k t x = x .  (16) 

If the applied stress were also to be increased by A0- 
within the time interval At during which recovery has 
occurred, the threshold link size would decrease by 
Ak,, resulting in an additional density of dislocations 
(the hatched area in Fig. 2) being mobilized. The 
density, APm, c~, mobilized through the stress increase 
is given by Equation 3 or 

APm, ~ --  L (~a ~,a Aka (3a)  

The total density of dislocations mobilized is 
(Equations 3a and 16) 

Apm = Apm, r + APm, o 

= f p q b a ~ a ( A ) t l k = k "  - -  A~a )  (17) 

In deriving Equation 17 a second order term involving 
Aqb~ and Ak~, which may arise as a result of the 

0 
 i:il " 

AXe 
Figure 2 Schematic illustration of the links mobilized due to (a) the 
recovery-growth of threshold size links by ALIk_ k (dotted area) 
and (b) the reduction of the threshold size byA~a upon stress 
increase (shaded area). 
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variability of qb with t, has been neglected. The mobil- 
ization rate is Apm/At in the limit At ~ 0, or 

[dE d~'a I (18) 
Pm ~--" fp(~a~'a ~ ~-=~'~ -- d~- 

As the links of threshold size grow by A~,lk = z. during 
recovery, the whole network coarsens in such a way 
that the average link size increases by A (~,). The first 
term inside the bracket (Equation 18) can be written 
as 

d~, 
= 4o ~ (19) 

dt ~, c 

where 4o is, by definition, the ratio of the growth rate 
of threshold-size links to the growth rate of the aver- 
age link size ( L )  [9]. The use of the partial derivative 
in Equation 19 is to emphasize that the growth of ( L )  
referred to here is that which occurs during recovery in 
the absence of glide (e is held constant). As demon- 
strated elsewhere [9], the value of 4o depends on 
certain features of the dislocation distribution, such as 
the critical link size required for the growth of indi- 
vidual links, as well as the instantaneous values of ( ~ )  
and ~,. 4o is thus expected to be time-dependent as the 
nature of the distribution changes during deformation. 

Differentiating Equation 2 with respect to time 
gives 

63(~ )6~t ~ _ p-3/22 ~p& 

whereupon Equation 19 becomes 

_ 4 o 2 .  (20) 
dt = ~. 2p 3/2 

where 15,( = -(OP/&)~) is the annihilation rate of 
dislocations. Combining Equations 1, 7 and 20 with 
Equation 18 we have 

cfp~a r4ot9 a C+] 
0m = -- O L 2P a/2 + ~ -  (21) 

The strain rate is found by substituting this expression 
for ~)m into Equation 5, giving 

= O~lbLCfp~Pa ~4oOa C~] 
cr L2p 3/2 + ~5_ (22) 

Rearranging Equation 22 gives the work-hardening 
rate, 0, during high temperature deformation, i.e. 

~, o~t bLc fp dp a 293/2~ 
which, in view of Equation 14 can be written as 

0 = H -  2 c p 3 / ~  (24) 

Equation 24 gives the relationship between the slope 
of the high temperature stress-strain curve, 0, and the 
low temperature work-hardening rate, H. Besides the 
dependence of 0 on the stress, the dislocation density 
and the strain rate (or cross-head speed), it is also 
sensitive to 15~ and 4o, both of which are influenced by 
the dislocation distribution [9]. 
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5. The Bailey-Orowan model 
In deriving the Bailey-Orowan equation, it is custom- 
ary to start with the differential equation 

d o  = H d e  - R d t  (25) 

where H( = ( g o / & ) t )  is the work-hardening rate and 
R (  = - (~o/Ot)~)  is the rate of recovery, It follows 
from Equation 25 that 

0 = H -  R / ~  (26) 

The exact differential (Equation 25) could only come 
from a mechanical equation of state such as o 
= ~(e, t), the validity of which has been called into 

question [15]. Attempts by past workers to fit con- 
stant strain-rate deformation data on various mater- 
ials into Equation 26 have also proved futile [16, 17]. 
Based on the present model, an equation is derived 
below for 0 which, though similar in form to Equa- 
tion 26, bears a significant difference. 

If a pre-deformed sample is recovered at high tem- 
perature and subsequently re-tested at low temper- 
ature, the flow stress is expected to decrease as a result 
of the reduction in the dislocation density, in conform- 
ity with Equation 11. Suppose the low temperature 
flow stress, o, changes by - Ao upon recovering for 
time At at high temperature. 

From Equation 11 

- ~ -  = - 2 , , / ~  ~ = ( 2 7 )  

where Ap is the change in the dislocation density due 
to recovery and the subscript a indicates that recovery 
is carried out in the absence of glide. In the limit 
At ~ 0, the left hand side of Equation 27 is the rate of 
recovery, or 

I ~ ] o~2Gb[)a (28) 
R - ~ -  = - 2pl/a 

Combining Equation 28 with 24 yields 

0 = H %4oC reR (29) 
~2 c2 P~ 

or 
0 = H - n(t)R/  (30) 

where 

rl(t) = %4oCr2/(~2c2p) (31) 

Equation 30 is similar in form to Equation 26 with the 
important difference that the former contains a func- 
tion q(t) which depends on the applied stress, the 
dislocation density and the dislocation distribution 
(through 40). 

The implications of the network model for the 
Bailey-Orowan equation as applicable to creep defor- 
mation have been discussed elsewhere [18]. It is dem- 
onstrated therein that the equation ~ = R / H  is valid 
for steady-state but not for transient creep. This im- 
plies naturally that it is also valid for the steady-state 
stage of constant strain rate deformation, in which 
case rl(t ) must be equal to 1, i.e. from Equation 31 

(Y = o~3Gbp 1/2 (32) 



where ~3 = (~o~2/~[/o)  1/2. The direct proportionality 
between 0. and p~/2 (Equation 32) duringsteady-state 
deformation is well established, be it under the creep 
or the constant strain rate mode. 

6. Comparison with experimental data 
Figs 3 and 4 show the 0. vs ~ and p vs a data obtained 
by Przystupa et al. [4] for NaC1 monocrystals defor- 
med under compression at 873 K and 973 K. The flow 
stress, 0., increases monotonically with strain even 
though the free dislocation density, p, goes through a 
maximum at an early stage of deformation (about 2% 
strain). These data have been fitted into Equation 29 
re-written in the form 

(H - 0)~c2~2p 
t~oR = (29a) 

~o 0.2 

The values of 0. and 0 (the slope) are taken from the 
longest curves in Fig. 3, which are also fairly repres- 
entative of the stress-strain behaviour at each of the 
two test temperatures; p is taken from the data of 
Fig. 4. 

Since the cross-head velocity was held constant, the 
true strain rate, ~, during the compression tests varied 
according to the expression 

= 6.94 x 10-Sexplel s -1 (33) 

which means that ~ increased from 7.01 x 10 .5 s -~ to 
8.48 x 10 -5 s -a as ~ increased from 0.01 to 0.20 [4]. 
The value of k evaluated at each strain level is used in 
Equation 29a. The following values of the other para- 
meters appearing in the equation are also used 

% --  0r 2 = 0.5 

b = 3.97 x 10 -1~  for NaC1 

G = 9.5 x 109Nm - 2 a t 8 7 3 K  
and 8.4 x 109 Nm -2 at 973 K [4] 

c = % G b  = 1 .89Nm- ~ a t 8 7 3 K a n d  
1.67 N m -  ~ at 973 K. 

The value of the work-hardening rate H used to fit 
the data is 1.5 x 107 Nm -1, or H / G  ~- 1/600, which 
falls within the range of commonly observed H / G  

values [2] and is also close to the value 
( ~ 107 N m -  z) reported by Schmitten and Haasen for 
NaC1 monocrystals deformed at room temperature 
[19]. 

The values of the quantity (~/oR) obtained from 
Equation 29a are plotted as a function of strain in 
Fig. 5 for each of the two test temperatures. If the time 
(and hence strain) dependence of ~o is assumed to be 
relatively mild, the curves in Fig. 5 can be interpreted 
as the mode of variation of the rate of recovery during 
deformation. These curves bear striking similarity to 
the p vs e curves (Fig. 4), suggesting a direct correla- 
tion between the recovery rate and the dislocation 
density. 

The stress-strain curves can be rationalized as fol- 
lows. The slope, 0, of each curve decreases as the 
quantity (0.2/p)(q/oR) increases (Equation 29). In the 
early stage of deformation (~ < 2%), the dislocation 

e l  

X 
w 

1.2 
1.0 

O.B 
0.@ 
O.t, 
0.2 

0 

1 1 1 I , i , i , 

(o) 
L ! I I i I J I J 

1.0 

O.B 

0.5 Z 

b O.l, 

0.2 

0 
(b) 

t 1 I i J 1 I l * 

O.O& 0.08 012 (].16 0.20 
E 

Figure 3 Stress-strain curves for NaCI single crystals deformed 
under constant crosshead speed at 873 K (a) and 973 K (b) [4]. 
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Figure 4 Variation of free dislocation density, p, with strain, e, for 
NaCI single crystals deformed at 873 K ( �9  and 973 K (O)  [4]. 
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Figure5 Plots of(~oR ) against e at 873 K ( �9  and 973 K (O). 

density increases following yield and the rate of re- 
covery increases correspondingly. The decrease in 
slope of the stress-strain curve results largely from the 
increasing contribution of recovery to the mobiliz- 
ation of dislocation links of threshold size. With the 
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annihilation of some of the dislocations and the re- 
arrangement of others into low angle boundaries 
(e > 2%), the free dislocation density starts decreasing 
and is accompanied by a reduction in the rate of 
recovery. The fact that the slope, 0, keeps decreasing 
beyond the peak dislocation density implies that the 
ratio 13"2/13 increases faster than 4oR decreases, which 
is not surprising since ~ increases while P decreases. 

From Equation 28, we can write 

2(4oR)p 1/2 
4~ 15, - (34) 

o~ 2 Gb 

Values of 4o 15, obtained from Equation 34 using the 
4o R values from Equat ion29a are shown plotted 
against p2 in Fig. 6 for T = 873 K and 973 K. The plot 
is linear, i.e. 

4o15a = kP 2 (35) 

where the slope, k, which is related to the mobility and 
line tension of dislocations [20], is equal to 1.32 
•  es-1 at 873 K and 3.08 •  m 2s-1 at 

973 K. The annihilation rate can thus be written as 

15a = k f ( t ) 9 2  (36) 

where f ( t )  = 1 /4  o. This function can be attributed to 
the time dependence of the distribution function [9] 
and the flow stress in the experiments under con- 
sideration. Recovery experiments are in progress to 
confirm these observations. 

7. Discuss ion  and c o n c l u s i o n s  
From Equation 30 it is seen that a material subjected 
to constant strain rate deformation could display 
positive work-hardening, zero work-hardening or 
negative work-hardening (work-softening) depending 
on the relative values of the parameters appearing in 
the equation. Thus work-hardening (0 > 0) is ex- 
pected at high strain rates or when recovery is slow, 
and work-softening (0 < 0) at low strain rates or when 
recovery is rapid. Zero work-hardening (0 = 0) occurs 
when a balance is struck between the "recovery para- 
meters" on the one hand and the work-hardening rate 
on the other, i.e. when H = q ( t ) R / ~ .  This corresponds 
to either a peak in the stress-strain curve or the 
steady-state configuration. At steady-state, Equa- 
tion 23, when rearranged to make ~ the subject, be- 
comes identical to the expression for the creep rate for 
a material tested in the creep mode [9]. 

6 6 0 4  

The fact that H is always positive during low tem- 
perature deformation is a natural consequence of the 
constraint of an imposed (constant) strain rate. If the 
stress on a sample deforming at low temperature is 
held constant, generation of plastic strain will stop as 
soon as all links of threshold size have moved and got 
re-arrested at the nearest obstacles. Following the 
exhaustion of the threshold-size links, further mobil- 
ization of links is possible only if a new (shorter) 
threshold size is established, which in effect means that 
the stress must be increased (work-hardening). 

At high temperature, the generation of plastic strain 
continues even when the stress is constant. This creep 

deformation occurs because the continuous supply of 
new sources of slip (i.e. links of threshold size) is 
assured by the recovery growth of the network links. 
The rate of supply of such links, and thus the creep 
rate, depend on the rate of recovery. During constant 
strain rate deformation, the rate of supply of thresh- 
old-size links cannot cope with the imposed strain rate 
if the stress is held constant and recovery is too slow. 
The stress must therefore be increased (0 > 0) so as to 
reduce the threshold size and mobilize more links. As 
recovery speeds up, the rate of annihilation may reach 
the critical value where the supply of threshold-size 
links through recovery becomes just sufficient to con- 
form with the imposed strain rate. Under this condi- 
tion deformation continues without an increase in 
stress (0 = 0). 

Under very high rates of recovery, the rate of mobil- 
ization of links by recovery may become higher than 
can be accommodated by the imposed strain rate, 
whereby the stress drops (0 < 0). This, in effect, in- 
creases the threshold size and reduces the number of 
movable links. This explains the work-softening com- 
monly observed in materials which are deformed 
under constant strain rate at high temperature follow- 
ing prestraining at low temperature [6-8]. Cold 
worked structures are known to be more susceptible 
to recovery than structures obtained by deformation 
at high temperatures [8]. 

The scenario presented in this model shows that 
recovery influences high temperature deformation in 
two important ways, of which the reduction in ob- 
stacle (i.e. dislocation) density is the more apparent 
and the widely recognized. The other effect, which is 
subtle yet profound, is a "dynamic" one in the sense 
that it is not readily discernible from a visual exam- 
ination of the instantaneous or "static" dislocation 
structure. This is the influence of recovery on the rate 
of production of threshold-size links, which act as new 
slip sources. The importance of the latter factor stems 
largely from the nature of dislocation glide in pure 
metals and some solid solution alloys: in a situation 
where most of the links are held up in the network at 
any given instant, it is to be expected that the rate of 
deformation may be determined more by the rate of 
mobilization of links than by the details of the glide 
process itself. 

This model and its creep counterpart developed 
earlier [9] have shown clearly that the mechanism of 
high temperature deformation is fundamentally the 
same, be it under the condition of constant strain rate 



or constant stress (creep). The main difference lies in 
the externally imposed constraints. In the former, the 
sample complies with an imposed strain rate as new 
slip sources are activated through recovery, and, if 
necessary, through stress adjustments, while in the 
latter, an imposed stress constrains the sample to 
deform at a rate which is dictated largely by the speed 
of recovery. Whereas work-hardening denotes the in- 
ability of recovery to cope with the imposed strain rate 
in the one case; in the other, the declining strain rate 
(during normal transient creep) is a manifestation of 
the decreasing rate of mobilization of links due to the 
decreasing rate of recovery. 
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